Книжный каталог

Использование Радиотехнических Средств В Судовождении

Перейти в магазин

Сравнить цены

Категория: Книги

Описание

Настоящая работа представляет собой обработанные лекции по курсу Навигация и лоция , прочитанные автором студентам судоводительского факультета Ленинградского высшего инженерного морского училища имени адмирала С. О. Макарова, а также студентам-заочникам по судоводительской специальности.

Сравнить Цены

Предложения интернет-магазинов
Использование радиотехнических средств в судовождении Использование радиотехнических средств в судовождении 288 р. bookvoed.ru В магазин >>
Метрология и радиоизмерения Метрология и радиоизмерения 529 р. ozon.ru В магазин >>
Владимир Горелов Межвидовой унифицированный комплекс средств автоматизации пунктов управления и командных пунктов радиотехнических формирований ряда «Фундамент» Владимир Горелов Межвидовой унифицированный комплекс средств автоматизации пунктов управления и командных пунктов радиотехнических формирований ряда «Фундамент» 295 р. litres.ru В магазин >>
Обеспечения надежности НКРТС Обеспечения надежности НКРТС 7790 р. ozon.ru В магазин >>
Кочарян Ю. Professional English in Navigation (Профессиональный английский язык в судовождении). Учебное пособие Кочарян Ю. Professional English in Navigation (Профессиональный английский язык в судовождении). Учебное пособие 345 р. chitai-gorod.ru В магазин >>
Белоусов, Олег Андреевич, Зырянов, Юрий Трифонович, Федюнин, Павел Александрович Основы радиотехнических систем: Учебное пособие / 2-е изд., перераб. и доп. Белоусов, Олег Андреевич, Зырянов, Юрий Трифонович, Федюнин, Павел Александрович Основы радиотехнических систем: Учебное пособие / 2-е изд., перераб. и доп. 1156 р. bookvoed.ru В магазин >>
Ю. Т. Зырянов, О. А. Белоусов, П. А. Федюнин Основы радиотехнических систем. Учебное пособие Ю. Т. Зырянов, О. А. Белоусов, П. А. Федюнин Основы радиотехнических систем. Учебное пособие 990 р. ozon.ru В магазин >>

Статьи, обзоры книги, новости

Назначение и принцип действия судовых навигационных РЛС

Назначение и принцип действия судовых навигационных РЛС

Радиолокация — метод обнаружения в пространстве различных объектов посредством радиоволн. Этот метод реализуется в радиолокационных станциях (РЛС), действие которых основано на использовании явления отражения радиоволн от различных объектов, расположенных на пути их распространения.

Судовая РЛС — это установленная на судне РЛС, предназначенная для обнаружения и последующего наблюдения за берегом, судами, льдами и другими объектами, представляющими интерес для судоводителя.

Судовая навигационная РЛС (НРЛС) обеспечивает возможность измерять расстояния, пеленги и курсовые углы на объекты и применяется для определения места судна в географической и относительной системах координат при самых разнообразных условиях плавания.

Навигационные радиолокационные станции представляют собой импульсные радиотехнические средства, работа которых основана на использовании зависимости между временем распространения радиосигнала и навигационным параметром. Такая РЛС пери­одически излучает кратковременные импульсы колебаний СВЧ, а в промежутке между излучениями принимает отраженные от объектов импульсные сигналы, запаздывающие на время t3=2D/c. Здесь D — расстояние до объекта, а с - скорость распространения радиоволн. По измеренному интервалу времени рассчитывается дальность до объекта D=сt3/2. Направление (азимут) на объект определяется с помощью антенны направленного действия. При повороте антенны в горизонтальной плоскости, когда цель окажется в преде лах ее диаграммы направленности, на вход приемника РЛС поступают отраженные сигналы. При совпадении оси диаграммы направленности антенны с целью напряжение на входе приемника будет максимальным, и указатель поворота антенны покажет направление на объект. При нахождении в радиусе действия РЛС нескольких целей отраженные сигналы от них будут смещены по времени и азимуту. Отраженные сигналы от объекта отображаются на экране РЛС, что дает возможность определять его координаты.

Основной недостаток радиолокационного метода пеленгования — относительно невысокая точность определения направления на объект.

РЛС применяются автономно или совместно с береговыми устройствами - радиолокационными отражателями и радиолокационными маяками-ответчиками, находящимися в радионавигационных точках.

Определение места судна относительно отражающих объектов производится по пеленгу и расстоянию до них. Поэтому навигационные РЛС являются дальномерно-азимутальными радиотехническими средствами.

Возможность определения местоположения судна при плавании в сложных условиях (малая видимость, наличие навигационных опасностей, узкостей и др.), наглядность отображения внешней обстановки в районе плавания делают РЛС одним из основных технических средств судовождения.

РЛС позволяет решать следующие задачи:

• определение координат места судна по точечным и пространственным ориентирам путем измерения радиолокационных пеленгов

• определение места судна по точечным и пространственным ориентирам путем совмещения равномасштабных изображений береговой линии

или отражающих горизонталей, наблюдаемых на индикаторе кругового обзора РЛС и на карте;

• опознание побережья и глазомерная ориентировка при плавании в стесненных условиях;

• обнаружение надводных навигационных опасностей, плавучего льда, ливневых облаков и снежных зарядов;

• обнаружение и наблюдение встречных судов, определение элементов их движения для оценки ситуации недопустимого сближения и решения задачи безопасного расхождения с ними;

• определение относительного места судна при плавании в караванах;

• определение маневренных элементов судна.

Навигационные РЛС, входящие в состав автоматизированных навигационных комплексов или в интегрированное оборудование ходового мостика, или сопрягаемые с системами автоматической радиолокационной прокладки, позволяют, кроме того:

• автоматизировать процесс прокладки линий относительного движения встречных судов, выполнять расчеты элементов их

движения и маневра расхождения с ними;

• осуществлять обсервационную прокладку пути судна при плавании в стесненных условиях и в прибрежной зоне;

• непосредственно измерять элементы суммарного сноса судна.

К недостаткам навигационных РЛС, влияющим на безопасность судовождения, относятся:

• наличие теневых секторов и минимальной дистанции, в пределах которых объекты не обнаруживаются;

• специфическое искажение объектов на экране РЛС относительно их изображения на морской навигационной карте и затруднение их опознавания;

• ограниченность дистанций обнаружения объектов географическим фактором радиолокационной видимости, зависимость от отражающих способностей и размеров объектов, а также зависимость возможности обнаружения от маскирующего влияния осадков ливневого характера;

• относительно низкая точность радиолокационного пеленгования.

Ориентировочное значение радиолокационной дальности обнаружения объектов (в милях) при нормальном (атмосферное давление 760 мм, температура воздуха 15 °С, температурный градиент 0,0065 с/м, относительная влажность 60%) состоянии атмосферы рассчитывается по формуле

Dpo = 2,39( ) (7.1)

где hа— высота антенны РЛС над уровнем моря, м; h0 — высота отражающей части объекта над уровнем моря, м.

При использовании РЛС необходимо учитывать, что сильные осадки (ливни, град, снежные заряды) уменьшают дистанцию обнаружения объектов на 30-50%, а наличие качки снижает точность измерений. В этих условиях наблюдение необходимо вести при длине волны РЛС 10 см. На условия наблюдения влияет волнение моря, вызывающее засветку центральной части экрана РЛС отражениями от волн.

На точность определения места судна с помощью РЛС непосредственно влияют искажения за счет размеров ориентиров и углов их облучения РЛС. При определении места по радиолокационным пеленгам и дистанциям необходимо использовать точечные ориентиры, соизмеримые с разрешающей площадью РЛС (площадь, ограниченная разрешающей способностью РЛС по углу и дистанции). Пространственные ориентиры, размеры которых больше разрешающей площади, целесообразно использовать только для обсерваций по измеренным радиолокационным дистанциям до участков, облучаемых РЛС под прямым углом. При облучении таких ориентиров (объектов) под острым углом их изображение на экране РЛС смазывается, что вызывает появление трудно учитываемых систематических погрешностей как по направлению, так и по дистанции.

При определении места судна по естественным радиолокационным ориентирам необходимо учитывать, что их отражающие поверхности (скалы, обрывистый берег, сопки и т. п.) не совпадают на местности с береговой линией, а лежат на уровнях (горизонталях), обычно превышающих уровень моря, а на больших дальностях — и высоту антенны РЛС. Отражающие горизонтали, определенные опытным путем, наносятся на карту.

studopedia.org - Студопедия.Орг - 2014-2018 год. (0.005 с) .

Источник:

studopedia.org

Технические средства судовождения

Технические средства судовождения. Средства связи

Дата добавления: 2015-08-06 ; просмотров: 694 ; Нарушение авторских прав

Судовая радиолокационная станция (РЛС) предназначена для обнаружения надводных объектов и берега, определения места судна, обеспечения плавания .

В РЛС используется явление отражения радиоволн от различных объектов, расположенных на пути их распространения, таким образом, в радиолокации используется явление эха. РЛС содержит передатчик, приемник, антенно-волноводное устройство, индикатор с экраном для визуального наблюдения эхосигналов.в узкостях, предупреждения столкновения судов.

Все суда должны обеспечивать радиолокационную прокладку на экране РЛС, для этого их оборудуют системой автоматической радиолокационной прокладки (САРП). САРП выполняет обработку радиолокационной информации и позволяет производить

Принцип работы РЛС следующий. Передатчик станции вырабатывает мощные высокочастотные импульсы электромагнитной энергии, которые с помощью антенны посылаются в пространство узким лучом. Отраженные от какого-либо объекта (судна, высокого берега и т. п.) радиоимпульсы возвращаются в виде эхосигналов к антенне и поступают в приемник. По направлению узкого радиолокационного луча, который в данный момент отразился от объекта, можно определить пеленг или курсовой угол объекта. Измерив, промежуток времени между посылкой импульса и приемом отраженного сигнала, можно получить расстояние до объекта.

Так как при работе РЛС антенна вращается, излучаемые импульсные колебания охватывают весь горизонт. Поэтому на экране индикатора судовой РЛС создается изображение окружающей судно обстановки. Центральная светящаяся точка на экране индикатора РЛС отмечает место судна, а идущая от этой точки светящаяся линия показывает курс судна.

Изображение различных объектов на экране радара может быть ориентировано относительно диаметральной плоскости судна (стабилизация по курсу) или относительно истинного меридиана (стабилизация по норду). Дальность «видимости» РЛС достигает несколько десятков миль и зависит от отражательной способности объектов и гидрометеорологических факторов.

Судовые РЛС позволяют за короткий промежуток времени определить курс и скорость встречного судна и избежать, таким образом, столкновения.

Судовые средства связии сигнализации классифицируют по двум основным признакам: по назначению и характеру сигналов. По назначению средства связи подразделяют на средства внешней и внутренней связи.

Средства внешней связи служат для обеспечения безопасности мореплавания, связи с другими судами, береговыми постами и станциями, обозначения рода деятельности судна, его состояния и т. д.

Внешние средства сигнализации и связи делятся на визуальные, акустические и радиотехнические.

Визуальную связь обеспечивают: средства световой сигнализации и связи (клотиковые огни, прожекторы, специальные фонари для направленной передачи, приспособленные для передачи знаков азбуки Морзе и других сигналов); средства предметной сигнализации и связи (сигнальные флаги, фигуры и знаки); пиротехнические средства, служащие, как правило, для подачи сигналов бедствия.

К звуковым средствам сигнализации и связи относятся судовой свисток, судовой колокол, гонг, звуковые пиротехнические средства.

Основное средство внешней связи на море - радиосвязь. Радиообмен ведется в режимах телефонии, цифрового избирательного вызова, буквопечатания. Система спутниковой связиИНМАРСАТпредоставляет морякам телефон с прямым автоматическим набором номера, телекс, факс, электронную почту, режим передачи данных. Специальные системы связи обеспечивают передачу на суда информации для обеспечения безопасности мореплавания (НАВАРЕА, НАВТЕКС). Глобальная морская система связи при бедствии (ГМССБ) обеспечивает определение координат терпящего бедствие судна, связь и передачу информации при проведении поисково-спасательных операций, а также другие режимы радиообмена.

Средства внутренней связи и сигнализации предназначены для обеспечения подачи сигналов тревоги, других сигналов, а также надежной связи между мостиком и всеми постами и службами. К этим средствам относятся судовая автоматическая телефонная станция (АТС), судовая система громкоговорящей связи, машинный телеграф, звонки громкого боя, судовой колокол, мегафон, носимые УКВ радиостанции, губной свисток, звуковая и световая сигнализация о повышении температуры, появлении дыма, поступлении воды в судовых помещениях

Существуют три типа аварийных радиобуев (EPIRB – Emergency Position Indicating Radio Beacon):

Не нашли то, что искали? Google вам в помощь!

Источник:

life-prog.ru

Радиотехнические средства навигационного

Радиотехнические средства навигационного

Радиотехнические СНО (РТСНО) – специальные космические, наземные или плавучие радиостанции, работающие в радиочастотном диапазоне, предназначенные для решения задач навигации совместно с судовыми ТСН (приемоиндикаторами).

На 1-ом этапе использования РТСНО для определений места судна в море считалось, что наиболее перспективным является развитие сети береговых радиопеленгаторных станций (БРПС).

Однако в последующем было признано более целесообразным пеленговать береговые радиоустановки с помощью судовых радиопеленгаторов. Так получила свое развитие обширная сеть круговых радиомаяков (КРМ).

Затем стали активно использовать РТС для вождения судов по заданным маршрутам с помощью, так называемых, створных РМ-ков (СРМ) направленного излучения.

Позднее семейство РМ-ков направленного действия (НРМ) пополнилось секторными РМ-ми с характеристикой излучения в виде вращающихся равносигнальных зон (ВРМ, NSPM).

Широкое внедрение в практику судовождения радиолокации с применением НРЛС и береговых РЛС (БРЛС) вызвало появление таких новых типов РТСНО, как радиолокационные отражатели (РЛО) – пассивные (РЛП) и активные радиолокационные маяки-ответчики (РМО).

Особое развитие получили специальные РНС, представляющие собой совокупность передающих радиостанций, излучающих взаимно синхронизированные сигналы, и судовых приемоиндикаторов (СПИ), принимающих эти сигналы с целью определения места.

Такие РТСНО, дающие высокую точность и надежность определения места, приобрели в свое время важное значение в вопросе обеспечения безопасности мореплавания при самых различных условиях плавания.

Космические РНС, навигационные спутниковые системы (НСС), в которых для определения места с помощью ИСЗ могут использоваться различные средства и методы.

В 1958 г. академик АН СССР В.А. Котельников предложил доплеровский метод для определения параметров орбит ИСЗ.

Низкоорбитальная НСС «Транзит» (США) с 1967 г. применяется для нужд торгового мореплавания. В настоящее время широко используются среднеорбитальные спутниковые РНС «GPS NAVSTAR» (США) и «ГЛОНАСС» (РФ) и (в перспективе) «ГАЛИЛЕО» (ЕС).

Береговые радиопеленгаторные станции (БРПС) и радиомаяки

1. БРПС. Эти станции по запросу судна пеленгуют его и по радио передают на судно значение радиопеленга. Обычно БРПС, работая в группе, передают на судно его обсервованные координаты на определенный момент времени. БРПС не несут ответственности за правдивость сообщаемых судну координат. Широкого развития не получили.

Сведения о БРПС – в Р.V «РТСНО» и в Р.IV т.II английского описания радиосигналов.

2. Радиомаяки (РМ-ки) – это передающие радиостанции с известным мореплавателю положением. В установленное время РМ-ки излучают присвоенные им опознавательные знаки и сигналы на заданных частотах для определения направления на них.

Рис. 11.4. Классификация РТСНО

Все РМ-ки делятся на 2 основные группы:кругового (КРМ) и направленного (НРМ) излучения.

В 1-м случае для определения направления на судне должен быть установлен радиопеленгатор (РП).

Во 2-м случае – вместо РП можно использовать обычный широковещательный радиоприемник СВ диапазона.

На побережье океанов и морей их установлено около 1 тыс.

КРМ-ки разделяют на РМ-ки дальнего действия (> 100 миль), ближнего действия (< 100 миль) и маркерные маломощные автоматические, применяемые для ограждения опасностей, обозначения подходных точек, точек поворотов, отдельных пунктов в труднодоступных для обслуживания районах, а также для «сгущения» сети КРМ-ков ближнего действия.

КРМ-ки просты по устройству береговой аппаратуры, однако имеют ряд серьезных недостатков:

Ø зависимость точности определения радиопеленга от погрешности курса;

Ø ограниченную возможность использования в темное время суток (ночной эффект);

Ø сравнительно большие погрешности определяемого по ним места судна.

КРМ-ки наиболее эффективно используются днем на удалении от берегов до 150 ¸ 175 миль (ночью – 60 ¸ 75 миль).

Для повышения эффективности КРМ-ки объединяются в навигационные группы(от 2-х до 6-ти в группе), где работают поочередно на одной и той же несущей частоте и излучают сигналы, отличающиеся только опознавательными сигналами и частотой модуляции. Это и обеспечивает строгую последовательность работы КРМ-ков в любое время суток (маркерные РМ-ки в группы не объединяются).

Сведения о КРМ-ках: Р.III «РТСНО» и в Р.V т.II английского описания радиосигналов.

б)Комбинированные РМ-ки (радиоакустические СНО) – занимают особое место, но широкого распространения не получили. В них применяется радиоакустический метод, основанный на совместном действии РМ-ка с воздушной и (или) подводной акустической установкой. В этом случае РМ-к может действовать совместно с сиреной, тифоном, диафоном, наутофоном и одним из излучателей подводных звуковых сигналов.

Сведения о них в Р.III «РТСНО» либо в Р.V «Радиомаяки» т.II английского описания радиосигналов.

в)Радиомаяки направленного действия (НРМ-ки) по виду характеристики разделяют на створные (СРМ), вращающиеся – с вращающейся характеристикой направленности (NSPM) и с веером вращающихся равносигнальных зон (ВРМ), часто называемых секторными.

3. Секторные радиомаяки (СРМ-ки)работают на основе равносигнального способа определения направления и применяются для проводки судов по прямым фарватерам. Ориентирование судна при плавании по фарватеру, обеспеченному СРМ, осуществляется путем прослушивания и опознания сигналов СРМ-ка, принимаемых на судовой радиоприемник и удержания судна в пределах зоны равной слышимости двух переплетающихся сигналов: например: «А» (– ¾) и «Н» (¾–).

Сведения о СРМ-ках – в Р.III «РТСНО» или в Р.V т.II английского описания радиосигналов.

а)Вращающиеся радиомаяки (NSРМ) – имеют диаграмму излучения в форме «восьмерки» или «кардиоиды», которая равномерно вращается в горизонтальной плоскости. Эти РМ-ки работают по принципу приема минимума сигнала и позволяют определить место судна с помощью обыкновенного широковещательного приемника. При этом пеленги, полученные по ВРМ, будут более точными, а допустимая дальность пеленгования – значительно большей, чем при работе с NSРМ. Более того, точность определения места судна по ВРМ выше, нежели по пеленгам КРМ-ков.

Принцип действия ВРМ основан на использовании вращающихся равносигнальных зон (РСЗ), которые получаются в результате частотного перемещения в пространстве на некоторый угол многолепестковой диаграммы направленности излучения.

ВРМ-ки устанавливаются в 2-х вариантах:

1) 3-х мачтовый – для обслуживания 2-х секторов по 120° каждый, лежащих по обе стороны линии антенн – базы;

2) 5-ти мачтовый – для обслуживания всего пространства вокруг маяка в 360°.

Секторные РМ-ки работают по установленному расписанию. Цикл работы 3-х мачтовых ВРМ – 60с (1 мин.): первые 30с РМ-к работает как КРМ-к, вторые 30с излучение становится направленным и РМ-к передает 60 сигналов (точек и тире). По счислимому месту судна устанавливают № сектора, а по числу сигналов, принятых до радиосигнальной зоны определяют направление на судно (Орт. П). Пеленги прокладывают обычно с помощью специальных РНК или таблиц.

Сведения о ВРМ-ках – в Р.II «РТСНО» или в т.V Р.V ч.2 английского описания радиосигналов.

Источник:

megaobuchalka.ru

Система автоматической подстройки частоты

курсовая работа Использование радиотехнических средств в судовождении Причины радиодевиации на судне. Измерение расстояний и курсовых углов, определение места судна с помощью радиолокационных станций. Система автоматической подстройки частоты. Причины появления субрефракций и сверхрефракций. Принцип работы импульсной РНС.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.

Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.

Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Подобные документы

Свойства электромагнитных волн, лежащие в основе работы радиосистем извлечения информации. Измерение расстояния, угловых координат и радиальной скорости. Влияние кривизны земной поверхности и атмосферной рефракции на точность радиолокационных наблюдений.

Сущность и принцип функционирования радиолокационной системы. Особенности перевода информации, получаемой от радара, в цифровую форму. Требования, предъявляемые IMO к точности местоположения судна. Оценка точности современных радиолокационных систем.

Синтез функциональной схемы. Строение функциональной схемы. Выбор элементной базы и реализация функциональных блоков схемы. Назначение основных сигналов схемы. Описание работы принципиальной схемы. Устранение помех в цепях питания. Описание программы.

Понятие и функциональные особенности радиолокационных станций, их классификация и разновидности в сфере обзора земной поверхности. Принцип работы, структура и основные элементы данных станций, структурные схемы. Прием и передача информации потребителю.

Расчет номинального значения петлевого усиления, параметров сглаживающих цепей и минимального значения отношения мощности сигнала к мощности помехи. Системы автоматической подстройки частоты на примере функциональной схемы супергетеродинного приемника.

Принципиальная и функциональная схемы системы автоматической стабилизации частоты вращения двигателя постоянного тока. Определение передаточных характеристик системы. Проверка устойчивости замкнутой системы по критериям Гурвица, Михайлова и Найквиста.

Измерение координат в радиолокации, принципы обнаружения. История исследования и разработки радиолокационных устройств. Импульсная радиолокация. Измерение угловых координат цели, дальности в импульсной радиолокации. РЛС обнаружения и РЛС слежения.

Сущность метода частотно-фазовой автоматической подстройки частоты в тракте формирования и генерации радиопередающего устройства. Фазовый анализ генератора Мейснера. Способы улучшения динамических свойств системы и повышения ее помехоустойчивости.

Теоретический обзор и систематизация методов построения многопозиционных радиолокационных систем. Обоснование практической необходимости использования РЛС. Определение общих технических преимуществ и недостатков многопозиционных радиолокационных систем.

История разведки радиоэлектронных средств, характеристика и принципы работы аппаратуры. Что такое частота сигнала и как производится его поиск. Устройство разведывательного приемника, выбор диапазонов. Помехи работе радиолокационных станций и их защита.

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.

PPT, PPTX и PDF-файлы представлены только в архивах.

© 2000 — 2018, ООО «Олбест» Все права защищены

Источник:

otherreferats.allbest.ru

Использование радиотехнических средств в судовождении

§ 12. Радиотехнические, звукосигнальные и гидроакустические средства навигационного оборудования

На первом этапе использования радиотехнических (РТ) СНО для определения места судна в море считалось, что наиболее перспективным является развитие сети береговых радиопеленгаторных станций (БРПС).

Рис. 42. Основные виды РТСНО

пушка дает яркую вспышку

приводится в дей

тет с размерами

волн, звук нерегу

массой, т. е. с по

звук низкого тона

Мощный звук среднего тона

Подобен судовому туманному сигналу

дения в действие

и 10—15 для груп

пы из двух коло

не менее 30 для

ствующими буквами по коду Морзе

Особое развитие получили специальные радионавигационные системы, представляющие собой совокупность передающих радиостанций, излучающих взаимосинхронизированные сигналы, и судовых приемоиндикаторов, принимающих эти сигналы с целью определения места судна в море. Такие РНС, дающие высокие точность и надежность определения места, приобрели исключительно важное значение для обеспечения безопасности мореплавания в самых различных условиях.

Звукосигнальные СНО — устройства для подачи воздушных сигналов для ориентировки мореплавателей относительно береговой черты в условиях пониженной видимости. Такие СНО лишь предупреждают о приближении к опасности и никогда не могут служить средством для определения места судна, поэтому воздушные туманные сигналы и называются предостерегательными. Основные характеристики ряда воздушных сигналов (1—5) приведены в табл. 3.

Гидроакустические СНО — устройства для подачи подводных сигналов, с помощью которых определяют место судна в тех случаях, когда более точные методы использованы быть не могут. Основные характеристики подводных звуковых сигналов (6—7) даны в табл. 3.

Источник:

scibook.net

Использование Радиотехнических Средств В Судовождении в городе Оренбург

В данном интернет каталоге вы сможете найти Использование Радиотехнических Средств В Судовождении по разумной стоимости, сравнить цены, а также найти прочие книги в категории Книги. Ознакомиться с свойствами, ценами и обзорами товара. Доставка выполняется в любой город России, например: Оренбург, Тюмень, Новокузнецк.